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Credit Spread Option Valuation under GARCH

Nabil Tahani

Abstract

This paper develops closed-form solutions for options on credit spreads with

GARCH models. We extend the mean-reverting model proposed in Longstaff and

Schwartz (1995) and we use the Heston and Nandi's (1999) GARCH specification

rather than the traditional lognormal. Our model, being more flexible,  captures better

the empirical properties of observed credit spreads and contains Longstaff and

Schwartz (1995) model as a special case. GARCH coefficients are estimated using

spread levels for corporate bonds.

Keywords : Credit spread, options, GARCH models, mean-reversion.

Résumé

Cet article propose une formule fermée pour l’évaluation des options sur les écarts de

crédit dans le cadre des modèles GARCH. On se base sur le modèle de retour à la

moyenne proposé par Longstaff et Schwartz (1995) et on utilise le modèle GARCH

proposé par Heston et Nandi (1999) au lieu du traditionnel modèle lognormal. Ce

modèle étant plus flexible, s’ajuste mieux aux propriétés empiriques des données

observées . Il contient le modèle de Longstaff et Schwartz (1995) comme cas

particulier. Les coefficients du modèle GARCH sont estimés en utilisant les niveaux

des écarts de crédits des obligations corporatives.

Mots clés : Écart de crédit, options, modèles GARCH, retour à la moyenne.
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I   Introduction

Until recently, credit risk was considered as legitimate to do business, just as another

uncertainty factor which was unhedgeable. Currently, credit risk can be purchased, sold or

restructured within portfolios in the same way as traditional financial products. This is made

possible thanks to Credit Derivatives, which are the most important new types of financial

products introduced during the last decade. These instruments offer investors an important

new tool for dynamic hedging and managing long positions in credit risk exposures. From

their characteristics, credit derivatives present several resemblances to the traditional

options. One difficulty, however, comes from the fact that the determinant variable is the

evolution of the credit spread instead of traditional interest rates or exchange rates. Thus, we

need a model for credit spreads. Basing their justification on the observed empirical

properties of   credit spreads, Longstaff and Schwartz (1995) proposed a mean-reverting

model for the logarithm of the credit spread. They showed that credit spreads were mean-

reverting in logarithm but they assumed the change in logarithm to be well-approximated by

the normal distribution.

This paper provides a more general framework for the volatility using GARCH

models. It is well-known that financial data sets exhibit conditional heteroskedasticity.

GARCH-type models are often used to model this phenomenon and show their ability to

explain some irregularities (e.g. in equity returns) better than the traditional Geometric

Brownian Motion. In the literature (see Bollerslev and al., 1992), there are many

applications of ARCH models to interest rate data. All these applications focused on :

1) Term Spread, Engle and al. (1987) and Engle and al. (1990) estimated the relationship

between long- and short-term interest rates; 2) Bond Yields Levels, Weiss (1984) estimated

ARCH models on AAA corporate bond yields and found that ARCH effects were

significantly evident. Although most studies involving interest rates used linear GARCH

models, nonlinear dependencies could possibly exist in the conditional variance.

This paper estimates GARCH effects on the Credit Spread. We use the Heston and

Nandi's (1999) GARCH specification and we keep the mean-reverting character showed by

Longstaff and Schwartz (1995). The GARCH model, being more general for the volatility,

fits observed credit spreads data better than the simple mean-reverting normal model. Also,
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Heston and Nandi (1999) showed that their conditional variance process converges weakly

to Heston's (1993) Stochastic Volatility model, which means that our model has a mean-

reverting square-root variance process as a continuous-time limit. Thus, our model contains

continuous-time Longstaff and Schwartz (1995) model as a special case. Details on the

convergence will be provided later.

The next section examines the mean-reversion character of credit spreads in our data

set. Section III describes the GARCH process and presents credit spread options formulas.

Section IV estimates GARCH coefficients with the maximum likelihood method using

corporate bond spreads levels over treasuries, analyses some properties of the GARCH

credit spread options and compares our results to those of Longstaff and Schwartz (1995).

Calculation details are in the Appendix. Figures are presented at the end of the main text.

II   Credit spread mean-reversion

We examine the spread between Moody's AAA and BAA 10-20 years bond indices

and several U.S. Treasury bond yields (30 and 10 years maturity). We use daily observations

over 1986-1992. Summary statistics for the spreads are presented in Table 1. We denote the

logarithm of the credit spread by Xt. Figures 1 and 2 plot the time series of Xt for AAA and

BAA indices over 30 years  and 10 years U.S. TBond.

Table 1 : Summary statistics for AAA and BAA credit spreads and log-spreads
over treasuries. September 1986 - December 1992

         30 years Tbond          10 years Tbond Number of

Mean Std Dev Mean Std Dev Observations

AAA 0.72239 0.21091 0.93317 0.25866 1654

Log AAA - 4.9739 0.29977 - 4.7146 0.29016 1654

BAA 1.76570 0.34370 1.97640 0.34616 1654

Log BAA - 4.0551 0.19144 - 3.9388 0.17187 1654

We also report Skewness and Kurtosis coefficients for log-spreads in Table 2. We can easily

see that these coefficients are different from those of a normal distribution. This implies that
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we cannot assume a normal distribution for log-spreads. Instead, we propose a different

process, such as GARCH, that takes into account this findings.

Table 2 : Skewness and Kurtosis coefficients for AAA and BAA log-spreads
over treasuries. September 1986 - December 1992

         30 years Tbond          10 years Tbond Number of

Skewness Kurtosis Skewness Kurtosis observations

Log AAA - 0.3060 2.9910 - 0.4901 3.5275 1654

Log BAA 0.1323 2.5354 0.1614 2.7811 1654

It is shown that both time series display mean-reversion. AAA credit spreads are apparently

more mean-reverting than BAA. In order to formalize these observations and see how our

data evolve over time, we regressed daily changes in the value of Xt on the value of Xt one

day before :

ttttt XXXX εβα∆ ++=−= ++ 11 . (1)

The regression results are reported in Table 3. The slope coefficient is significantly negative

in all the regressions. The AAA slope coefficients are definitely higher than the

correspondent BAA's, which implies that they are more mean-reverting.

Table 3 : Results from regressing daily changes in the logarithm of the credit
          spread of AAA and BAA over 30y and 10y US TBond

αα ββ t-ratio αα # t-ratio ββ # R2* SE*

AAA Tb30y -0.16803 -0.03365
{-3.1308}¤

-5.473
[5.11e-8]+

-5.461
[5.46e-8]

0.0177 0.07508

AAA Tb10y -0.12701 -0.02691
{-2.9632}

- 4.818
[1.58e-8]

- 4.821
[1.56e-6]

0.0139 0.06582

BAA Tb30y -0.05365 -0.01311
{-3.4497}

-3.642
[2.79e-4]

-3.613
[3.12e-4]

0.0078 0.02823

BAA Tb10y -0.06134 -0.01551
{-3.0131}

-3.899
[1.05e-4]

-3.887
[1.06e-4]

0.0091 0.02788

* SE is the standard error of the regression and R² is the determination coefficient
# All the coefficients are significant at the 99% level
+ p-values are reported in brackets
¤ Dickey-Fuller  test statistics are reported for Unit Root Test. The asymptotic critical values are -3.43 at 1%  and -2.86 at 5%
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Note also that the logarithm of the AAA credit spread is more volatile than that of the

BAA's. The standard errors of regressions that used AAA bonds are higher than those of

regressions that use BAA bonds. Longstaff and Schwartz (1995) found the same property

with their data set. The values of R² are of the same order of magnitude than those reported

by Longstaff and Schwartz (1995).

Given these empirical properties, one should assume a mean-reverting process for

the logarithm of the credit spread. But unlike the Longstaff and Schwartz (1995) model and

given the skewness and kurtosis analysis in Table 2, we propose a GARCH framework for

the volatility of the logarithm of the credit spread. We use Heston and Nandi's (1999)

GARCH(1,1) specification which is asymmetric. We also use their methodology to derive

closed-form solutions for credit spread options. We assume that the riskless interest rate is

constant and it is denoted by r.

III   The model and the option valuation formula

We define Xt as the value of the logarithm of the credit spread at the end of period t

and time periods are of length ∆. We assume that (Xt) follows the process given by :

( ) 2
2101

1111

tttt

ttttt

hzhh

zhhXX

θβββ

λγµ

−++=

+++=

+

++++
(2)

or equivalently, to show the mean-reverting feature, by :

( )
( ) 2

2101

1111 1

tttt

tttttt

hzhh

zhhXXX

θβββ

λγµ

−++=

++−+=−

+

++++

where ht is the conditional variance of Xt known at time 1−t  and { }( )Ttzt ,...,1: ∈  is a

sequence of  independent standard normal random variables. As pointed out by Heston and

Nandi (1999), although this specification differs from the classic GARCH models, it is quite

similar to the NGARCH model of Engle and Ng (1993). This model has the advantage that it

provides closed-form solutions for the credit spread derivatives. When β1 and β2 are equal to

zero, our model is equivalent to the Longstaff and Schwartz (1995) model observed at
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discrete intervals, with a risk-premium parameter λ. This parameter was assumed to be equal

to zero in Longstaff and Schwartz (1995) because their model was assumed to be risk-

adjusted and the parameter µ incorporated the market price of the risk-premium. We cannot

use this assumption within our model because the volatility is not constant. As in Heston and

Nandi's (1999) model, the parameter θ controls for the skewness or the asymmetry of the

distribution of the log-spreads. If θ > 0, this implies that negative zt raise the variance more

than positive zt. The covariance of the log-spread process and the variance process is given

by :

( ) tttt hhXCov 211 2, θβ−=+− . (3)

If the kurtosis parameter β2 is positive, positive values for θ result in negative correlation

between the two processes.

As shown in Heston and Nandi (1999), the discrete time variance process ht

converges weakly to a variance process vt that follows the square-root process of Feller

(1951), Cox, Ingersoll and Ross (1985), and Heston (1993), when the time step length ∆

tends to zero (see Foster and Nelson 1994). The log-spread process Xt will also have a

continuous-time diffusion limit. Thus our two-processes model converges weakly (see

Convergence in Appendix) to a mean-reverting square-root variance process (X,v) :

( )
( ) tttt

ttttt

dZvdtvdv

dZvdtvXdX

σκω

λδη

+−=

++−=
(4)

where η is the long-run mean, δ is the mean-reversion parameter, λ is the risk-premium

parameter, ω, κ and σ are the square-root process parameters. By assuming that κ, σ and λ

are all zero, we get the constant volatility risk-adjusted Longstaff and Schwartz (1995)

model. Thus our valuation model will contain the Longstaff and Schwartz (1995) valuation

formula for constant risk-free rate as a special case.  In order to value options, we must work

under a risk-neutral probability measure. Let us rewrite Equation (2) in the form :

( ) 2**
2001

*
111

tttt

tttt

hzhh

zhXX

θβββ

γµ

−++=

++=

+

+++
(5)
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where

λθθ

λ

+=

+=
*

*
ttt hzz

Note that all we need is that { }( )Ttz
t

,...,1:* ∈  to be a sequence of risk-neutral independent

random variables and that *
1+tz  to be a standard normal random variable conditional to the

information available at time t (see Derivation of the moment generating function in

Appendix) . This is obvious since 1+th  is known at time t and { }( )Ttzt ,...,1: ∈  is a sequence

of independent standard normal random variables.

At this point, we can derive closed-form solutions for European options using the

inversion of the characteristic function technique following Kendall and Stuart (1977). We

first derive a formula for the characteristic function for the process given in Equation (2).

Let ),,( φTtf  denote the moment generating function of exp(XT) under the historical

probability measure conditional to the information available at time t :

( ))(),,( Tt XexpETtf φφ = (6)

where Et denotes the time t conditional expectation operator under the historical probability

measure. Motivated by the Heston and Nandi's (1999) asset price model, we calculate the

moment generating functions for exp(Xt+1) and exp(Xt+2) to find that f takes a log-linear form

and is a function of Xt and ht+1. The general form for the moment generating function is

given by :

( )1),,(),,(),,( +++= tt
t-T hTtBTtAXexpTtf φφφγφ (7)

where

0),,(),,( == φφ TTBTTA (8)

and

( )),,1(21
2

1
),,1(),,1(),,( 20

1 φβφβφµφγφ TtBlnTtBTtATtA tT +−−++++= −− (9)
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( )21

2

1
21

),,1(21
2

1

),,1(
2

1
)(),,(

θφγ
φβ

φβθφλθγφ

−
+−

+

++−+=

−−

−−

tT

tT

TtB

TtBTtB

(10)

Given the terminal conditions, ),,( φTtA and ),,( φTtB can be calculated recursively. The

Appendix derives the recursion formulas for these functions (see Derivation of the moment

generating function in Appendix). Note that, although this formulation is given for the log-

spread process under the historical probability measure, one can get the risk-neutral

conditional moment generating function ),,(* φTtf  by replacing θ and λ respectively by

λθθ +=*  and 0* =λ . The characteristic function of the process XT under the historical

probability measure conditional to time t is given by ),,( φiTtf  where i is the complex

number such that 12 −=i .

The value of a credit spread call with maturity T and strike price K is then given by :

( )( )+−− −= KXexpEeXTtC Tt
tTr )(),,( *)( (11)

where Et
* denotes the time t conditional expectation operator under the risk-neutral

probability measure and ( )+• denotes the positive part of a real number. We can compute the

cumulative distribution function of the log-spread process by inverting its characteristic

function. Indeed, Kendall and Stuart (1977) show that for a random variable Y :

∫
+∞ −









+=≥

0

d
)(1

2

1
)( φ

φ
φ

π

φ

i

ify
ReyYP

i

(12)

where Re(•) denotes the real part of a complex number and f is the characteristic function.

Using this result, Heston and Nandi (1999) provided a formula for the expected payoff.

Evaluated under the risk-neutral probability measure, the call value is given by :

( )21
*)( )1(),,( KPPfeXTtC tTr −= −− (13)

where
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∫
+∞ −








 +
+=

0
*

*

1 d
)1(

)1(1

2

1
φ

φ
φ

π

φ

fi

ifK
ReP

i

∫
+∞ −









+=

0

*

2 d
)(1

2

1
φ

φ
φ

π

φ

i

ifK
ReP

i

(14)

This formula looks like the Longstaff and Schwartz (1995) formula. If we note that

the )1(*f  term represents, by definition, the risk-neutral forward (or expected) value of the

spread

( ))()1,,()1( ***
Tt XexpETtff == , (15)

and if we assume that the log-spread at time T is conditionally normal with mean υ and

variance η², we have :

( ) 







+=

2
)(

2
* η

υexpXexpE Tt (16)

This term is present in the Longstaff and Schwartz (1995) formula and is equivalent to our

)1(*f  term in Equation (15). )(2 •P  is the risk-neutral probability that the log-spread is

greater than K at maturity. The call Delta ratio is given by (see Derivation of delta in

Appendix) :

XTtTr

X
ePfe

e

XTtC
Delta −−− ×=

∂
∂

= 1
*)( )1(

)(

),,(
γ (17)

In the same way, the put value is given by (see Credit spread Call-Put parity in Appendix) :

( ))1)(1()1(),,( 1
*

2
)( PfPKeXTtP tTr −−−= −−  (18)

IV   The empirical properties of credit spread options

This empirical section starts with the estimation of the GARCH coefficients using

the data described earlier. It proceeds to analyze the implied conditional distribution. It then

presents some properties of GARCH credit spread options and compares our model to

Longstaff and Schwartz's (1995).
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GARCH Estimation

For the estimation, we used daily data and set the time step length equal to 1 day. We

used both AAA and BAA spreads over 10y and 30y US Tbond over September 1986 -

December 1992. We estimated the coefficients using the maximum likelihood method. To

illustrate the mean-reversion and the importance of the skewness parameter, we also

estimated restricted models by setting first 1=γ  and then 0=θ . Restricted models and the

unrestricted model are compared to each other using the log-likelihood ratio. Table 4 reports

the estimation results. In all cases, the mean-reversion parameter, γ, was significantly lower

than 1. The restricted model 1=γ  is strongly rejected in all cases. This reinforces the results

reported in the regression analysis of the daily changes in the logarithm of the credit spread.

The parameter γ was also largely significantly different from 0. We also note that the γ’s for

the BAA bonds are higher than those of AAA. Thus, the AAA bonds are more mean-

reverting than BAA, which was also reported in the regression analysis. For the skewness

parameter, θ, the restricted model 0=θ  is easily rejected for AAA bonds and can not be

rejected in the case of BAA over 30y Tbond. For BAA over 10y Tbond, the t-test rejects the

hypothesis 0=θ  while the log-likelihood ratio test does not. When the parameter θ is

significantly positive, this implies negative correlation between the log-spread and the

volatility processes as shown in Equation (3). Log-spread processes over 10y Tbond have

more skweness than those over 30y Tbond for both AAA and BAA bonds ( 196.16=θ  for

AAA over 10y Tbond and 765.14=θ  over 30y Tbond). The volatility process is stationary

in all cases. Stationarity coefficients for AAA over 30y Tbond and AAA over 10y Tbond are

quite similar. Thereafter, we used the estimates in the first line in Table 4 as our GARCH

parameters. Figures 3 and 4 plot the volatility processes implied by the GARCH estimation

for AAA bonds. For AAA bonds, the log-spread processes over both 30y and 10y Tbonds

have quite similar stationarity coefficients 2
21 θββ + (0.911 ≅ 0.913) which measure the

degree of the volatility mean-reversion (Heston and Nandi, 1999). Figures 5 and 6 plot the

volatility processes implied by the GARCH estimation for BAA bonds. Comparing Figures

3 and 5 (or 4 and 6), we note that the volatility of AAA bonds is more mean-reverting than

the BAA's. From Figures 5 and 6 and unlike AAA bonds, it is clear that the volatility of
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Table 4 : Maximum log likelihood estimates of the GARCH model using daily data of the log-spread of
AAA and BAA over 30y and 10y US Tbond

µµ γγ λλ ββ0 ββ1 ββ2 θθ ββ1+ββ2θθ 2 #
Long-run
volatility ¤

log L
L-ratio

test γγ =1*
L-ratio

test θθ = 0*

AAA

Tb30y

-0.153
(6.509) **

[1e-10] •

0.9697
(194.35)
[0.000]

{6.0675}+

4.477e-5
(7.09e-5)
[1.000]

1.068e-4
(2.693)
[7.2e-3]

0.827
(43.859)
[3e-279]

3.812e-4
(10.685)
[8.2e-26]

14.765
(8.015)

[2.1e-15]

0.911 0.0739 3602.95 46.10
[1.1e-11]

41.66
[1.1e-10]

AAA

Tb10y

-0.145
(6.245)

[5.4e-10]

0.9693
(186.81)
[0.000]

{5.9126}

4.442e-5
(6.87e-5)
[1.000]

4.796e-5
(1.717)
[8.6e-2]

0.839
(42.405)
[2e-266]

2.836e-4
(10.543)
[3.4e-25]

16.196
(6.936)

[5.8e-12]

0.913 0.0618 3882.28 51.18
[8.4e-13]

46.65
[8.5e-12]

BAA

Tb30y

-0.038
(2.871)
[4.2e-3]

0.9909
(301.34)
[0.000]

{2.7693}

1.217e-4
(8.14e-5)
[1.000]

5.974e-5
(4.593)
[4.7e-6]

0.771
(32.383)
[1e-178]

1.086e-4
(11.441)
[3.2e-29]

3.768
(1.584)
[0.113]

0.773 0.0272 5207.40 12.40
[4.3e-4]

0.7
[0.403]

BAA

Tb10y

-0.055
(3.944)
[8.4e-5]

0.9862
(274.27)
[0.000]

{3.8398}

9.924e-5
(6.96e-5)
[1.000]

0.504e-5
(0.931)
[0.352]

0.885
(117.36)
[0.000]

0.729e-4
(13.316)
[1.7e-38]

9.270
(3.104)
[1.9e-3]

0.892 0.0268 5234.42 14.6
[1.3e-4]

3.6
[0.0578]

*   For the log-likelihood ratio test, the Chi-square critical values at 95% and 99% confidence levels are respectively 3.84 and 6.63
** t-ratios appear in parantheses. The t critical values at 95% and 99% confidence levels are respectively 1.645 and 2.326
•   p-values are reported in brackets. For the log-likelihood ratio test, the p-values are those of the Chi-square distribution
+   For γ, we also report the t-ratio for testing H0 : γ =1 vs. H1 : γ <1
#   The Stationarity coefficient β1+β2 θ 2 < 1 means that the volatility process is stationary
¤   Long-run volatility is the daily unconditional volatility given by hunc = (β0+β2) / (1-β1-β2 θ 2 )
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BAA over 10y Tbond is more mean-reverting than the volatility of BAA over 30y Tbond,

which is indicated by a higher 2
21 θββ + (0.892 > 0.773).

Implied GARCH distribution :

Using Equation (12), we derived the implied conditional distribution of XT. To see

how this implied conditional distribution varies from the normal distribution, Figure 7 plots

them for many variance ratios, that is the ratios between the initial variance and the

unconditional variance denoted by unch . Higher ratio values imply fatter-tailed distributions.

We can also expect that the conditional GARCH distribution has a positive skeweness,

which seems to be the case for a ratio value of 1. Figure 8 plots the implied conditional

distributions for a ratio value of 1 and for two different time horizons. The longer the time

horizon, the higher the skeweness compared to the normal distribution.

Credit spread option properties :

We limit our discussion to call options when we analyze the properties of our model.

In order to compare our discrete-time model to the continuous-time model of Longstaff and

Schwartz (1995), we define their continuous-time parameters using the coefficients

estimates such that the two stationary densities of processes Xt and ht have the same first

moments. The parameters in Equation (16) are defined as follows :

( )

( )T
unc

T
T

h

ln
X

22

0

1

)(

1

γη

γ
γµ

γυ

−=

−
−=

(19)

It is clear that when T takes high values, υ and η² have finite limits because γ < 1 :

unch

ln

=

−
−

≈
−

=

∞

∞

2

1)(

η

γ
µ

γ
µ

υ
(20)

The Longstaff and Schwartz (1995) call price (hereafter LS) is evaluated using the

conditionally normal distribution for XT with mean υ and variance η². Figure 9 plots the call

value as a function of the underlying credit spread using the GARCH parameters reported in

Table 4 (line 1) and their risk-neutral counterparts, with a strike 1=K , 1.0=r  and for
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different variance ratios. The LS call price and the intrinsic value are also represented. An

important property of GARCH credit spread calls, already noticed by Longstaff and

Schwartz (1995) within their model, is that their value can be less than the intrinsic value,

which is impossible with the Black and Scholes model. This is due to the mean-reversion

character of the credit log-spreads. Intuitively, in-the-money calls are less likely to remain in

the money over time, because the credit spread tends to decline towards its long-run mean.

For variance ratios less than 1, the GARCH credit spread call prices are less than the LS

price, while variance ratios greater than 1 give higher GARCH prices. As the underlying

credit spread increases, the difference between call prices becomes small. Figure 10 plots the

difference between LS and GARCH credit spread call prices for different variance ratios.

Note that the higher the variance ratio, the greater the difference, which reinforces the

results of Figure 9. The difference is , however, more important around the at-the-money

calls. Figures 11 and 12 plot credit spread call prices for different maturities (10 days and 1

year). Figure 11 shows again that the call prices pass below the intrinsic value even when

the call is only slightly in-the-money. Figure 12 gives another important property of

GARCH credit spread calls. They can be concave functions of the underlying credit spread.

Because of mean-reversion, the dynamics of the credit spread do not satisfy the first-degree

homogeneity property necessary for options to be convex functions (Merton, 1973). In turn,

this means that the delta of a GARCH credit spread call, given in Equation (17), could be a

decreasing function of the underlying credit spread. The delta of a GARCH credit spread

call decreases to zero as the time to maturity increases. Although our model is GARCH

mean-reverting, these properties were somewhat expected since Longstaff and Schwartz

(1995) have found that their continuous-time model exhibit such characteristics.

V   Conclusion

We have proposed a GARCH mean-reverting model for credit log-spreads as an

extension of the Longstaff and Schwartz (1995) model which uses a constant volatility. We

used the Heston and Nandi's (1999) GARCH specification to allow the variance process to

depend on the past levels of the credit spread. The GARCH was estimated using the

maximum likelihood method and the important coefficients, especially the mean-reversion

and the skeweness parameters, were found to be significant. Our model is then more flexible
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and captures the empirical properties of credit spreads in a better way than the traditional

lognormal model. We also derived closed-form solutions for European options on credit

spreads. Call prices exhibit the same unusual properties found by Longstaff and Schwartz

(1995). The call value can be less than its intrinsic value and can be a concave function of

the underlying credit spread. Comparing our model to Longstaff and Schwartz (1995)

model, we have found that the difference between them is more important for at-the-money

calls.

Although the closed-form solutions derived here are only for simple calls and puts on

credit spreads within a GARCH framework, valuation expressions for other credit spreads

European exotic derivatives, such as barrier options, could be derived in the same way.
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Figure 3 : Moody's AAA log-spread over 30y US Tbond - Volatilities
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Figure 5 : Moody's BAA log-spread over 30y US Tbond - Volatilities
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Figure 6 : Moody's BAA log-spread over 10y US Tbond - Volatilities
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Figure 8 : Implied conditional log-spread distribution for different maturities
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Figure 9 : Credit spread call prices for different variance ratios
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Figure 12 : Credit spread call prices for long term maturity
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Appendix

Convergence :

Our model converges weakly to a continuous-time model. First, given the

methodology in Heston and Nandi (1999), when the time step length ∆ tends to zero, the

variance process in our GARCH model converges weakly to a square-root process of Feller

(1951), Cox, Ingersoll and Ross (1985) and Heston (1993). Define v as the limit process of

variance h. Now, we have to show that the log-spread process X also converges weakly to a

continuous-time process. The dynamics of X can be written as :

1111 )( ++++ ++−=− tttttt zvvXXX ∆∆λδη

where 
∆

1
1

+
+ = t

t

h
v  and γδ -1= . In the same way as in Heston and Nandi (1999) who

worked with the special case δ = 0 (no mean-reversion), this process converges weakly to :

( )
( ) tttt

ttttt

dZvdtvdv

dZvdtvXdX

σκω

λδη

+−=

++−=

where (Zt) is a Wiener process, and ω, σ and κ are defined as in Heston and Nandi (1999).

Derivation of the moment generating function :

Recall that the moment generating function of the spread with a time horizon T

conditional to the time t information is given by :

( ))(),,( Tt XexpETtf φφ = .

First, we calculate this function for 1+= tT  in order to get the log-linear form. Without any

loss of generality, we assume that the time step length ∆ is equal to 1. We then have :

( )
( )( )

( ) ( )( )111

111

1)(),1,(

+++

+++

+

++=

+++=

=+

ttttt

ttttt

tt

zhexpEhXexp

zhhXexpE

XexpEttf

φφλγφφµ

φφλγφφµ

φφ

We obtain a log-linear form for ),1,( φ+ttf  by noting that zt+1 is conditionally normally

distributed and that ht+1 is known at time t. Hence we can write :
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



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



 +++=+ +1

2

2

1
),1,( tt hXexpttf φλφγφφµφ .

In the same way, one can calculate ),2,( φ+ttf  and find that we still obtain a log-linear

form for the generating function. Let us assume that at time 1+t , we have :

( )21
1 ),,1(),,1(),,1( ++

−− ++++=+ tt
tT hTtBTtAXexpTtf φφγφφ

where A and B are deterministic functions. At time t , the generating function can be written,

using the iterated expectations law :
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( )( )
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)(
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Then we have by definition of ),,1( φTtf + :

( ){ }21
1 ),,1(),,1(),,( ++

−− ++++= tt
tT

t hTtBTtAXexpETtf φφγφφ .

Replacing Xt+1 and ht+2 by their expressions as functions of Xt and ht+1 (see Equation (2)), we

get :
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φ

The two first terms in the expectation operator are known at time t, hence the only term that

we need to compute is the last one. This is where the Heston and Nandi's (1999) GARCH

specification takes the advantage over other GARCH models. The last term can be computed

as a function of ht+1 using the fact that, for a standard normal variable z and constants a and

b, we have :

( )( ) 







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×





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21
)21(

2

1
)(

2
2

Under the risk-neutral probability measure, we only need that *
1+tz  must be a standard

normal variable conditional to time t and this is the case since ht+1 is known and is constant



23

conditional to time t. Thus, the last term can be developed and rearranged to obtain a

"perfect" square of zt+1 and ht+1, added to a remaining term that depends on ht+1 and the

GARCH parameters. Rearranging the terms in a log-linear form, we get Equations (9) and

(10) in the main text.

Derivation of delta :

Note that the delta of a credit spread call is, by definition, equal to :

X

X
e

X

XTtC

e

XTtC
Delta −

∂
∂

=
∂

∂
=

),,(

)(

),,(
.

Using Equation (13) that gives the call valuation expression, we can write :

X
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X
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=
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Note that
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),,(

φφγ
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We then have using Equation (14) :
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and
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)1(
φφ

π
γ

γ φ ifKRePf
X

Pf i
tT
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In order to obtain Equation (17), we use a change of variable (ϕ = φ + i) in Equation (A1) to

see that :

( ) 0d)1(
0

2 =+−
∂
∂

∫
+∞

−
−

φφ
π

γ φ ifKRe
X

P
K i

tT

The only remaining term, the first on the right-hand side of Equation (A2), multiplied by the

discount factor and by )( Xexp − gives the delta expression as in Equation (17).
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Credit spread Call-Put parity :

As for Black and Scholes model, we proceed by noting that the payoff of a portfolio

that is long in a call and short in a put is given by :

( ) ( ) KeeKKe XXX −=−−−
++

Thus, the time t portfolio's value is simply the discounted forward value, that is :

( ) ( )( )KeEeKeEe X
t

tTrX
t

tTr −=− −−−− *)(*)(

which is equal to :

( )Kfe tTr −−− )1(*)( .

This means that :

( )KfeXTtPXTtC tTr −=− −− )1(),,(),,( *)( .
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